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Quantum Physics and Objective Description 

L.  L a n z  ~ 

Received July 22, 1993 

In the more refined description of concrete measuring procedures that is a l low~ 
by modem quantum theory, "objectivity elements" can be recovered that are 
usually deemed to be forbidden in quantum mechanics; actually, in the case of 
a macrosystem, a way towards an objective physical description appears. 

1. INTRODUCTION 

To easily understand the structure of modern quantum mechanics 
(Ludwig, 1983; Kraus, 1983; Davies, 1976; Holevo, 1982), one should first 
of  all realize that the preparation of  a quantum system (obviously in a 
statistical sense) is in general much better represented by a statistical 
operator on the Hilbert space H of  the system than by an element ~9 e l l ;  so 
one has to shift the set K of  the preparations from the space H to another 
suitable space T in which K gets a distinguished role: T is the Banach space 
of  trace class operators on H; K is the convex subset of  T consisting of the 
positive operators with trace 1; K generates T in the sense A = A t ~ T  can 
be represented as A = 2101 -)~2k02, 21 ,2eR +, ~I,2EK, and taking the infi- 
mum of  2~ +22 on these representations, one gets the trace-norm 
II A Ill = Tr[(A +A) m] = inf(2~ + 22); briefly, K is the base of  the base- 
normed space T. 

Any statistically determined transformation of a preparation is most 
naturally represented by an affine map d of K into K; then ~ can be 
uniquely extended as an endomorphism on T: d A  = 21 d Q 1 -  22~r i.e., 
as a positive, isometric (and therefore trace-preserving) map on T into T. 
Let us assume that, connected to a transformation d ~ of the prepared 
system, a statistically determined event 7 can be pointed out that can 
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happen, ? +, or not happen, ~ - ;  this is the most schematic description of a 
measurement. Then the decomposition sgrQ = a~+ + aL can be defined, 
where Tr(a~_)=Pr  is the probability that y happens and ~+,,,r/Trt,,~+ ), 
QL/Tr(a r_ ) are the two repreparations done taking also the facts ~ + or ? -  
into account. Now two affine maps J ~  are defined, or e = a ~ ,  which can 
be extended on T as linear, positive, contractive maps or and that yield 
the decomposition ~r = j~_ + J L .  Let us borrow a basic concept from 
classical probability theory; in place of the two events 7+, more generally 
we consider families of events linked to a measurable space (t~, Z) (t~ a set 
and Z a a-algebra of subsets of f~), an event being labeled by an element 
of  the a-algebra E and any one of these elements taking the place of ~+, 
~_. Then we have a whole family of maps Jr (B) ,  B~Y~; this family is a 
positive-contraction-valued measure on E and gives a decomposition of the 
conservative transformation ~r by 

d r = J r ( n )  = ~ J r ( n  t) (1.1) 
l 

for any partition of fl  into disjoint subsets fit. 
The physical interpretation is as follows; Mr e is the transformed 

preparation, 

pr(B) = Tr(Jr(B)0) (1.2) 

is the probability of the event ~n, and 

Jr(B)Q 
a ~ ( B )  = 

pr(B) 

is the repreparation done by taking ?s happening into account. By the 
adjoint map J~'(B) on ~ ( H )  -- T', setting F ( B )  = dr'(B)L equation (1.2) 
becomes 

pr(B) = Tr(F(B)0) 

Fr( �9 ) is a positive operator valued measure on X, normalized by 
b-v(fl) = I: it is an "observable" in the modem formulation; when F~( �9 ) 
are projections and Y~ = ~(0~0, the observable is associated to s commuting 
self-adjoint operators Xt =Sav, x tdF r, l: 1, 2 , . . . ,  s; thus recovering the 
usual much more restrictive concept of  observable. To sum up, all this 
comes out almost automatically; the shift ~k ~ Q starting the further shift: 
"operators transforming ~b"---,"maps transforming e-" 

A map ~r is reversible if a ' - 1  exists, positive; then as it maps pure 
states (the extreme points of K) into pure states, it has the unitary structure 
,.We = XQX*, X t X  = L and no nontrivial decomposition (1.1) is possible; a 
reversible map cannot have a measuring character. 



Quantum Physics and Objective Description 21 

Let us dwell a little more on the transformations ~r of  the system. 
Typically to d a time interval [to, tl ] is associated; in the simplest situation 
the system is isolated, the transformation being its spontaneous dynamical 
evolution; the usual basic assumption is its reversibility: one has reversible 
maps dt to  (to < t < fi) ,  with no measuring decomposition; this can be a 
precise formulation of  the idea that the quantum mechanical description is 
nonobjective, i f  a system 1 is not isolated, its evolution in a fixed surround- 
ing 2 in general depends on the whole history of  the preparation, i.e., on 
O~(t'), t ' <  to; in fact, these previous stages of  system 1, recorded in the 
evolution of  2, provide by the interaction, memory effects for 1. However, 
there are many important cases in which these memory effects can be 
neglected and the system has a "Markovian" evolution: 

~, = d t ,  o~,o (1.3) 

where ~r is a family of  conservative irreversible maps with the structure 

~'t"' = d t t : ' d ~  :', to <- t '  <- t" ~ t "  < tl 

These maps allow measuring decompositions, as we shall describe in 
Section 2. 

A prominent case in which memory effects should be negligible is when 
the system 1 interacts with a measur ing  device: then by suitable shielding, 
the interaction is just reduced to a well-protected probe-channel; e.g., 1 is 
an atom, 2 is the electromagnetic field + optical devices + photocounters. 
Another very general situation for a Markovian evolution is a system 
investigated over a time scale much longer than the decay time of 
the correlations in system 2, such as, e.g., a Brownian particle 1 in a 
liquid 2. 

2. MARKOVIAN DYNAMICS AND M E A S U R E M E N T  

A family of  Markovian conservative maps, assuming also complete 
positivity, is given for an infinitesimal time interval [t, t + dr] c [to, tl], by 
the general expression 

d ' , + %  = [1 +  e(0 dt]Q 

i 
 e(t)e e] + Z   (t){LAt)QLJ(t) - '  * = 2[Lj (t)Ly(t),  e]+ } (2.1) 

j = l  

where H ( t )  is the Hamiltonian, Lj ( t )  are operators on H describing 
irreversible processes, and ? j ( t ) > 0  control their strength; one has 
Tr(~ ' ,  + dtQ) = Tr(Q) and one can see c-positivity and irreversibility writing 
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the r.h.s, of (2.1) at first order in dt and observing that dt > 0 implies 

x l + d t g H ( t ) - -  ~ ~7](t)Lf(t)Lj(t) 
j = !  

+ ~ 7](t)Lj(t)QLf(t) dt > 0 (2.2) 
j = l  

The s operators Lj (t) which generate the irreversible dynamics also indicate 
the possible measuring decompositions of ~ .  These decompositions have 
been characterized in the context of "continuous measurement theory" 
initiated by Davies (1969, 1970, 1971) for the counting processes, devel- 
oped in full generality by the Milan group (Barchielli et al., 1982, 1983; 
Lupieri, 1983; Barchielli and Lupieri, 1985a, b; Barchielli, 1986a, b), and 
further investigated by Holevo (1988, 1989). The basic improvement with 
respect to the usual measurement theory consists of the fact that the time 
extension of the measurement can be taken into account; the outcome of 
the measurement not only consists of some fixed sets of values assumed by 
the observables (they may be practically constant) during the measure- 
ments, but it refers to the trajectories of tbe measured quantities. The space 
fl[~ is a space of trajectories; for any It', t"] = [to, fi] a g-algebra X~ is 
given, related to the piece of trajectory corresponding to It', t"], the result 
of the measurement to be read as: the trajectory of the measured quantities 
belongs to a certain subset B~Z',;'. The theory is based on a family of 
c-positive measures J[" on y~c ["instruments" (Davies and Lewis, 1970)] 

t" t 1 which provide a decomposition of the dynamical map ar = J c  (f~,0) and 
satisfy a composition law, (1.4): 

j t tT(BznB,) = J],',"(B2)J[,'(BI), B~E~f;, B2~".," 

to <- t' < t" ~ t" <- tl (2.3) 

Such a family .r ~" has been called an "'operation valued stochastic process" 
in the work of the Milan group just cited; I am not going to give its explicit 
structure, but refer for a more extended account to the contribution of 
Prosperi in these proceedings (there .r is replaced by J-). 

Since sophisticated experiments can be done with some continuous 
monitoring of a quantum system, by this theory one can at least better 
understand the impressive success of experiments designed about the 
classical history of the measured quantum system; consider, e.g., the 
shelving effect for a trapped ion (Dehmelt, t990); a beautiful description of 
such effect in this formalism was given in Barchielli (1987). The general 
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relevance of the concept of a consistent history for a measured quantum 
system has been recently stressed by Omnrs (1992). 

There is, however, a subtle limitation in obtaining a naive classical 
description, as can be expected, due to the fact that this description is 
gained starting from measurement and not assumed a priori; actually only 
measurements on pieces (which may be very small) of trajectories make 
sense, the concept of a classical state at a time point being a further 
idealization. In fact the physically relevant quantities Xh related to a test 
function h(t) cannot be represented as x h = ~t/o dt h(t)x(t),  x(t)  being the 
underlying state variable: x(t)  should be too irregular! Instead, choosing 
h~(t) as the characteristic function of the interval [to, to + ~], one considers 
the stochastic family X~ = xh~, which generates all the other quantities 
xh = ~,~ h(r) dX~ by means of the increments of a nondifferentiable stochas. 
tic family X,. The a-algebrae Err; can be generated considering the incre- 
ments 

X~. - X~. , t" < z '  < T" <- t" 

of a set of classical stochastic processes 

X~ X),~, X~,~, j : l , 2  . . . . .  s 

whose physical meaning and relationship with the operators Lj( t )  in 
equation (2.1) is elucidated by the expectation values 

< x  ~ (~") _ x o (~') > = ~" 
3. 

< X ) ( z " ) - X ) ( z ' ) > =  j = l ,  2 , . . . , s  (2.4) 

<x~(~") - x~(~')> = f /  �9 

and by the second momenta (for simplicity only in the case of the same 
time interval) 

< [ x ; : ~ ( ~ . )  - x~(~.)]tx~, (~, , )-  xj,, (~,)] > 

= dtl dt2 Tr[[LPj2(tl)o~ct2~j~(t2) + 5Yyt( l)d,2~y2(tz)]Qt 2] 

ZLo(t) 

z j , ,  (t) zj,~(t)A 

dt Tr[Lj* (t)Lj (t)e,l 

dt Tr[(LJ (0 + Lj(O)e,], 
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where the maps s are 

~ o  (t)( . ) = L t(t)( . )Lj (t), ~,~1 (t)( " ) = Lj(t)( " ) + ( ' ) L J  (T)  

~ . ( t ) ( "  ) = 1 (Lj(t)(" ) - ( ' )L~ ( t ) )  (2.6) 
l 

and the coefficients Zj;(t) must satisfy the inequality 

z 2 .,  (2.7) Z2o( t )+~. , ( t )+Zj2( t )  <Tj ( t ) ,  j: 1 , 2 , . .  s 

The other momenta have similar expressions and involve no more structure 
functions Zji(t): together with the operators Lj in (2.1), they fully character- 
ize the measuring process. To take the expectation values implies a smooth- 
ing over the trajectories: in fact ( d X ( t ) )  is differentiable; one has 

d(J~j ( t ))  _ Tr[LJ (t)Lj (t)O,], (x~)  = dt h(t) Tr[L~ (t)Ot] 
dt o 

and the other analogous expressions; then it is clear that we are describing 
the trajectories of  observables "associated" to the noncommuting opera- 
tors: 

L~(t)Lj(t) ,  L j ( t ) + L ) ( t ) ,  l ( L ) ( t ) - L j ( t ) ) ,  j: 1,2 . . . .  s, te[to, tl] 
i 

all of  them, at all t e[t0, tm], appearing as "compatible observables" encom- 
passed by the observable: F[~o(B ) = (J')[~o(B)L The maps ~ ( t )  in (2.6) 
depend on the operators Lj(t)  and yield typical structures arising in 
correlation functions; here these structures are a precise consequence of  the 
formalism. Due to the Xij(t) terms in (2.5) the stochastic processes Xj(z)  are 
not differentiable; X)'2(z) look like Wiener processes and the irregular 
character of  the state variables x)'2(t) is a white noise; X~ look like 
Poisson processes and the state variables x ~ (t) are affected by a shot noise. 
Different measurement procedures, i.e., different J t ,  i', can be associated to 
the same maps ~'~i', as is indicated by the different choices of  the coefficients 
Xu(t), implying different noises; e.g., if a radiating atom is observed through 
the radiated field, direct, homodyne, heterodyne detection is possible leading 
to different octt" (Barchielli, 1990, n.d.). Due to (2.7), the noises can be 
properly minimized, but not eliminated; they are related to the strengths of  
the irreversible terms in the dynamics. The classical level emerging for a 
system under measurement refers to Wiener and Poisson processes; in the 
more schematic theory of  measurement, when the space of  outcomes is the 
classical phase space, one can construct very useful instruments: 

~B d3 x d3p 
Jw)Q-- h3 
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based on the classical measure dx 3 dp3/h 3, in terms of the "instrument 
density": [e ) (~( .  )l e )  ( e [, where l e(xp) ) is a coherent state. Similarly one 
can construct the instruments J tt".(B ) looking for suitable "instrument 
densities" on a space of classical Wiener and Poisson processes; I refer to 
the contribution of Barchielli in these proceedings for this interesting point 
of view. 

3. MACROSCOPIC SYSTEMS 

In Section 2 a quantum system undergoing a measurement in a time 
interval [to, tl] was shown to have a classical trajectory space as the direct 
consequence of its irreversible Markovian evolution; now we can read this 
result in another more general way: an open system with a Markovian 
dynamics (2.1) (by a suitable idealization, e.g.: too small time scales are 
excluded) has a classical trajectory space in which variables corresponding 
to the operators Lj(t)+Lf(t) ,  (1/i)(Lj(t)-Lf(t)) ,  and Lf(t)Lj(t) are 
represented; their expectation values are given by the usual expressions 

Tr[(Lj(t) + L) (t))d',oe, o], etc. 

and their correlations by expressions (2.5) in which also unavoidable noise 
terms appear, determined by the functions Xji(t). These noises represent an 
effect of a specific environment, not included into the structure of Aa(t). 
Once also these functions Zji(t) are known the whole statistics of the 
stochastic processes X~(t), t~[to, tm], is given and can be calculated in 
principle in terms of Q,o: e.g., the full statistics in fg~ of an objective 
Brownian motion with quantum corrections was obtained (Barchielli, 
1983), starting from the phenomenological ~ proposed by Lindblad (1976) 
for a Brownian particle. 

Let us stress a peculiarity shown by equation (2.5): the limit of small 
coupling to the environment ~i (t) ~ 0 can be safely taken at the level of the 
expectation values (2.4), but makes all other momenta of the probability 
meaningless. Then one has the hint that general difficulties in the quantum 
theory of macrosystems have their roots in the usual assumption that the 
dynamics of an isolated microsystem is given by a reversible d~' :  such an 
assumption could be wrong, or admissible if only expectation values of 
some relevant observables are calculated. That quantum measurement 
theory can be well cured taking the environment into account has been 
stressed in particular by Joos and Zeh (1985) and Zurek (1981, 1982). 
Actually the very definition of a system implies a separation procedure (Lanz 
and Melsheimer, 1993) from the surrounding: in simple cases one expects 
that a separated system might be well described by a Markovian family 
d',7, but only for a pure microsystem might ~tt" be reversible! To prepare 
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an isolated system means that the quantum fields of its elementary compo- 
nents are confined inside definite space regions because of suitable 
boundary conditions, the environment being a vacuum for the outside 
fields. Due to the locality of field interaction, this description is not trivial 
and needs a reconsideration of current field theory. Also, an internal 
environment, representing the nondescribed structure of the elementary 
components, can play a role. One can expect that, due to the simplicity of 
the surrounding field vacuum, a Markovian d~i' should give the dynamics 
of the isolated system: then one has the operators L: in L:, the correspond- 
ing stochastic processes Xj(t), and their trajectory space; these processes 
could take the place of the phase-space variables of  classical statistical 
mechanics and have the role of nonlocal hidden variables, strongly depen- 
dent on the boundary conditions. A preliminary check of these ideas is 
done in Lanz and Melsheimer (1993): in a Galileian world, one-component 
systems are described taking H as the Fock space H F of a quantum 
Schr6dinger field ~k(x); the separation of a system is done introducing 
one-particle energy eigenstates un(x) [up(x)] for a particle confined inside 
(excluded from) a finite region f~: H~l)un(x) = WnUn(X), Xef~; correspond- 
ingly, annihilation operators 

a.=fd3xu*(x)~O(x), ap=fd3xu~(x)~O(x) 
are introduced; Q(t) is created by the operators a~ and is a vacuum for ap, 
i.e. apQt = Qta~ = 0. For Qt a Markovian dynamics is assumed, with 

1 
l a n 2  V n  l n 2 n 3 n 4 a n 3 a n 4  , Ln = a n Hc = E Wna~an +-2n ~' a~ t 

n l n 2 n 3 n  4 

In this rough model the coefficients ]i, are not specified. In a more detailed 
treatment the separated system should be a subdynamics of the confined 
fields in a vacuum surrounding. By the choice 

1 
Znl = ,~n2 ~' ~ - ~  ]In, ~n0 ~ Znl 

the operation valued stochastic process J' ,o is given on the space of the 
huge set of stochastic processes X~(z) for all confined field modes n; for any 
quantity represented in usual statistical mechanics in terms of a,*, an, 
n = 1, 2 . . . . .  a corresponding stochastic variable can be constructed in a 
straightforward way in terms of the processes X~(~), i = 0 ,  1,2, 
n = 1, 2 . . . .  ; the expectation values of bilinear expressions are the same as 
in usual quantum statistical mechanics (with dynamics generated by ~ ) :  in 
their correlation functions, and also in nonquadratic expressions 7,,-depen- 
dent terms arise; for any finite subset of variables the joint probability 
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distribution can in principle be calculated. As an example, consider the 
operators for the confined field ~k~(x) and for the one-particle distribution 
f(x,  p), given by 

ff,,(x) = ~ a,u,(x), f (x ,  p) = Z a ,  t (nIF(~)( x, p)ln'>a, 
n nn" 

where F(~)(x, p), x, p~R 6, is a one-particle position-momentum observable 
(Lanz et at., 1985); the corresponding stochastic variables at time t are 
given by ~ ( x )  = ~_~ ~(t)u,~(x) and by 

[i(W;' - W")tl ~*,(n'lF(')(xp)ln)a,(t ) = Z exp h 
rt~n" 

1 0 
+ [ x . ( t  + - x (ol I. > 

where 

1 , + s  iW, , ,  1 
~(t )  = ~  f~ expl--~l~d[X~(~)-iX2(,:)] 

Let me stress that )7 is not a function of !/7; one does not have a classical 
stochastic fieM theory: a more complicated structure arises. The parameter 
6 determines the time scale; other parameters describing coarse grain- 
ing in phase space are inside the structure of F(I)(xp); all these para- 
meters strongly influence the correlation functions (~7(x't')~(xt)) and 
()~x'p't').~x"p"t")), the most critical term coming, respectively, from 
(~*(t)~,(t)) and from "* "* . . . .  (an (t)a,,(t)a,,(t )am(t )), n ~ m. This model, which 
excludes electromagnetism, is not realistic enough to be taken too seriously: 
however, the results are qualitatively reasonable. The main job in statistical 
mechanics is to recognize the quantities that are not too wildly fluctuating: 
this formalism, due to the noise terms, displays such quantities in a very 
clear way- and points to the hydrodynamic quantities. It can be seen the )'n 
can be chosen small enough, e.g., g 10 -7, SO that the Boltzmann equation 
for ( f lxpt ) )  still holds for reasonable time intervals, e.g., ~,105sec, 
without an appreciable noise for the hydrodynamic quantities related to 
space regions which are large enough, containing ~ 10 ~5 particles. At the 
kinetic stage the noise is not negligible. 

Inside this description of isolated systems, mierosystems appear in 
connection with the simplest breaking of the isolation condition. Take 

Oto=(d3p "43'''~*'~ a /u b'(Ou \ (3.1) F '~p~'t O p'N p[~t  0 p ' /  
3 
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where ~to is a statistical operator in the Fock space H F if ~to'~~ is a statistical 
operator on the one-particle Hilbert space I-I ~ spanned by the improper 
eigenfunctions Up of H~ call 3t,~ ' the previous J't;' in which the Hamilto- 
nian Hc is replaced by Hc + V, V depending also on ap and on a~, 
thus making interaction with the environment possible; then one can 
write 

Trnv [~ ttl 0 (B)~,o] = TrHo)[F~ ttl 0 (B), ~to]Q ~1o)] (3.2) 
/ 

where the effect operator F (1), i.e., 0 < F O) -< I, on H (1) has been introduced; 
let me stress the striking reductions: 

H F --~H 0), TrHF[3~)(B ) . . .  ] --* Trno)[F 0 ) ' ' "  ] 

and the reappearance of the formalism typical for a microsystem; here also 
the idealization Q~ = and the shift back H ~ T  can be very 
effective. Now the perturbed system might be looked upon as a measuring 
device for the microsystem; obviously, as it is not so easy to construct a 
good detector, it is not easy to make F~ Oto] #Pr(B) I(~)! Let us 
assume that Qo given by (3.1) can be obtained by coupling to the first 
separated system a second one and taking the partial trace over its states; 
then also the source of the microsystem can be introduced, the microsystem 
becoming essentially a way to represent the most elementary interaction 
between these two, objectively described, separated systems: this is basically 
the concept of a microsystem developed by Ludwig (1985). However, the 
usual concept of microsystem is not recovered in a full way: the 
Schr6dinger field 

['iHt-] F - iHt-] 
: 

H being the nonconfined Hamiltonian, transforms covariantly under the 
unitary Galilei group; but due to the boundary conditions, covariance 
cannot be expected for oCt/o(B), an, ap, Up; in this approach time translations 
and dynamical evolution are different concepts; only locally, and neglecting 
boundary effects, can covariance be recovered, e.g., p can be read as a 
momentum: a thermodynamic limit should be taken to define particles in a 
sharp way. A realization of this approach would attribute a peculiar central 
role to quantum electrodynamics, to be reconsidered taking separation of the 
systems into account. This description would be essentially incomplete since 
two environments are introduced: an external one, excluded by the boundary 
conditions, calling for large-scale physics; and an internal one, coming from 
the structure of nuclei. For these self-separating systems, objective properties 
could arise only by a more intrinsic dissipation mechanism. 
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